2 research outputs found

    Extreme Heights of 15 January 2022 Tonga Volcanic Plume and Its Initial Evolution Inferred from COSMIC-2 RO Measurements

    No full text
    The Hunga Tonga–Hunga Ha’apai underwater volcano (20.57° S, 175.38° W) violently erupted on 15 January 2022. The volcanic cloud’s top height and initial evolution are delineated by using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)-2 radio occultation (RO) measurements. The bending angle (BA) anomaly over the Tonga volcanic plume (within 200 km of the eruption center) at 5:17 UTC on 15 January showed a prominent peak at higher stratospheric heights. The top of the BA anomaly revealed that negative to positive change occurred at ~38 km, indicating the first height where the RO line-of-sight encountered the volcanic plume. The BA anomaly further revealed an increase of ~50% at ~36.1 km, and confirmed that the volcanic plume reached above ~36 km. Furthermore, the evolution of BA perturbations within 24 h after the initial explosion is also discussed herein. From collocated RO profiles with the volcanic plume, we can find a clear descent of the peak altitude of the BA perturbation from ~36.1 km to ~29 km within 24 h after the initial eruption. The results from this study will provide some insights into advancing our understanding of volcanic cloud dynamics and their implementation in volcanic plume modeling

    Balloon-borne aerosol–cloud interaction studies (BACIS): field campaigns to understand and quantify aerosol effects on clouds

    Get PDF
    A better understanding of aerosol–cloud interaction processes is important to quantify the role of clouds and aerosols on the climate system. There have been significant efforts to explain the ways aerosols modulate cloud properties. However, from the observational point of view, it is indeed challenging to observe and/or verify some of these processes because no single instrument or platform has been proven to be sufficient. Discrimination between aerosol and cloud is vital for the quantification of aerosol–cloud interaction. With this motivation, a set of observational field campaigns named balloon-borne aerosol–cloud interaction studies (BACIS) is proposed and conducted using balloon-borne in situ measurements in addition to the ground-based (lidar; mesosphere, stratosphere and troposphere (MST) radar; lower atmospheric wind profiler; microwave radiometer; ceilometer) and space-borne (CALIPSO) remote sensing instruments from Gadanki (13.45◦ N, 79.2◦ E), India. So far, 15 campaigns have been conducted as a part of BACIS campaigns from 2017 to 2020. This paper presents the concept of the observational approach, lists the major objectives of the campaigns, describes the instruments deployed, and discusses results from selected campaigns. Balloon-borne measurements of aerosol and cloud backscatter ratio and cloud particle count are qualitatively assessed using the range-corrected data from simultaneous observations of ground-based and space-borne lidars. Aerosol and cloud vertical profiles obtained in multi-instrumental observations are found to reasonably agree. Apart from this, balloon-borne profiling is found to provide information on clouds missed by ground-based and/or space-borne lidar. A combination of the Compact Optical Backscatter AerosoL Detector (COBALD) and Cloud Particle Sensor (CPS) sonde is employed for the first time in this study to discriminate cloud and aerosol in an in situ profile. A threshold value of the COBALD colour index (CI) for ice clouds is found to be between 18 and 20, and CI values for coarse-mode aerosol particles range between 11 and 15. Using the data from balloon measurements, the relationship between cloud and aerosol is quantified for the liquid clouds. A statistically significant slope (aerosol–cloud interaction index) of 0.77 found between aerosol backscatter and cloud particle count reveals the role of aerosol in the cloud activation process. In a nutshell, the results presented here demonstrate the observational approach to quantifying aerosol–cloud interactions.Geoscience and Remote Sensin
    corecore